Distributed size estimation in anonymous networks

نویسنده

  • Damiano Varagnolo
چکیده

The knowledge of the size of a network, i.e. of the number of nodes composing it, is important for maintenance and organization purposes. In networks where the identity of the nodes or is not unique or cannot be disclosed for privacy reasons, the size-estimation problem is particularly challenging since the exchanged messages cannot be uniquely associated with a specific node. In this work, we propose a totally distributed anonymous strategy based on statistical inference concepts. In our approach, each node starts generating a vector of independent random numbers from a known distribution. Then nodes compute a common function via some distributed consensus algorithms, and finally they compute the Maximum Likelihood (ML) estimate of the network size exploiting opportune statistical inferences. In this work we study the performance that can be obtained following this computational scheme when the consensus strategy is either the maximum or the average. In the max-consensus scenario, when data come from absolutely continuous distributions, we provide a complete characterization of the ML estimator. In particular, we show that the squared estimation error decreases as 1/M , where M is the amount of random numbers locally generated by each node, independently of the chosen probability distribution. Differently, in the average-consensus scenario, we show that if the locally generated data are independent Bernoulli trials, then the probability for the ML estimator to return a wrong answer decreases exponentially in M . Finally, we provide a discussion as how the numerical errors may affect the estimators performance under different scenarios. Index Terms Size estimation, sensor networks, distributed estimation, privacy-preservation, number of nodes, number of agents, anonymous networks, consensus.

برای دانلود رایگان متن کامل این مقاله و بیش از 32 میلیون مقاله دیگر ابتدا ثبت نام کنید

ثبت نام

اگر عضو سایت هستید لطفا وارد حساب کاربری خود شوید

منابع مشابه

A Robust Distributed Estimation Algorithm under Alpha-Stable Noise Condition

Robust adaptive estimation of unknown parameter has been an important issue in recent years for reliable operation in the distributed networks. The conventional adaptive estimation algorithms that rely on mean square error (MSE) criterion exhibit good performance in the presence of Gaussian noise, but their performance drastically decreases under impulsive noise. In this paper, we propose a rob...

متن کامل

Distributed Incremental Least Mean-Square for Parameter Estimation using Heterogeneous Adaptive Networks in Unreliable Measurements

Adaptive networks include a set of nodes with adaptation and learning abilities for modeling various types of self-organized and complex activities encountered in the real world. This paper presents the effect of heterogeneously distributed incremental LMS algorithm with ideal links on the quality of unknown parameter estimation. In heterogeneous adaptive networks, a fraction of the nodes, defi...

متن کامل

Effect of Markers Effect Estimation Methods, Population Structure and Trait Architercture on the Accuracy of Genomic Breeding Values

This study aimed to investigate the  effect  of  the method of estimating the effects of markers , QTLs distribution, number of QTLs, effective population size and trait heritability on the accuracy of genomic predictions. Two effective population sizes, 100 and 500 individuals, were simulated by QMSim software. A 100 cM genome including one chromosome was simulated where 500 SNPs and two diffe...

متن کامل

Tracking performance of incremental LMS algorithm over adaptive distributed sensor networks

in this paper we focus on the tracking performance of incremental adaptive LMS algorithm in an adaptive network. For this reason we consider the unknown weight vector to be a time varying sequence. First we analyze the performance of network in tracking a time varying weight vector and then we explain the estimation of Rayleigh fading channel through a random walk model. Closed form relations a...

متن کامل

Application of Artificial Neural Networks and Support Vector Machines for carbonate pores size estimation from 3D seismic data

This paper proposes a method for the prediction of pore size values in hydrocarbon reservoirs using 3D seismic data. To this end, an actual carbonate oil field in the south-western part ofIranwas selected. Taking real geological conditions into account, different models of reservoir were constructed for a range of viable pore size values.  Seismic surveying was performed next on these models. F...

متن کامل

ذخیره در منابع من


  با ذخیره ی این منبع در منابع من، دسترسی به آن را برای استفاده های بعدی آسان تر کنید

عنوان ژورنال:

دوره   شماره 

صفحات  -

تاریخ انتشار 2011